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Collective dynamics near fluid phase transitions
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By means of molecular dynamics simulations, we calculate the intermediate scattering functionF(ki ,t)
whereki is the wave number andt is the time. We focus on thermodynamic states in the vicinity of a fluid
phase transition in bulk and confined systems which we locate in parallel Monte Carlo simulations in the grand
canonical ensemble. As one approaches the limit of stability of the fluid~i.e., its spinodal! from either low- or
high-density branches of a subcritical isotherm,F(ki ,t) becomes increasingly long-range. The apparent lack of
decorrelation in the metastable regime can be understood within the framework of a simple mean-field theory
that links the long-range nature ofF(ki ,t) to a divergence of the ratio of isostress and isochoric heat capacities
g. Our results suggest that as one approaches the spinodal the dynamic structure factorS(ki ,v) (v fre-
quency!, which is related toF(ki ,t) through a Laplace transformation, should undergo a qualitative change
from the usual triplet of Brillouin and Rayleigh lines to a singlet (d-function-like peak! centered atv50 for
states directly at the spinodal. This qualitative change inS(ki ,v) should be measurable in scattering experi-
ments thereby promoting more detailed insight into the phase behavior and thermodynamic stability of con-
fined and bulk fluids.

DOI: 10.1103/PhysRevE.67.051202 PACS number~s!: 68.55.2a, 62.10.1s, 61.46.1w, 62.25.1g
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I. INTRODUCTION

In a recent publication, we investigated the collective d
namics of dense fluids in terms of the intermediate scatte
function by means of equilibrium~i.e., microcanonical en-
semble! molecular dynamics~MD! simulations@1#. We fo-
cused, in particular, on fluids confined by chemically hom
geneous, planar substrates~nanoscopic slit pore! where the
intermediate scattering function F(ki ,t)}^r
(2ki ,0)r(ki ,t)& can be expressed in terms of the time a
tocorrelation function of the Fourier components of the lo
density r(ki ,t). Here, ki5(m/L,n/L) is the wave vector
and t is time; m andn are integers andL denotes the length
of the ~square! computational cell in thex-y plane. Since we
restrict the analysis to two-dimensional in-plane wave v
tors, F depends only on the wave numberki[ukiu because
the confined fluid is homogeneous~and therefore its proper
ties are translationally invariant! across thex-y plane parallel
to the confining substrate surfaces. In other words, we c
sider only modes propagating in a direction parallel to
slit-pore walls.

This restriction permits us to develop a hydrodynam
theory for F(ki ,t) starting from z-averaged conservatio
laws for heat, mass, and momentum currents eventually l
ing to a closed expression forF(ki ,t) in terms of a set of
material constants@1#. The resulting expression forF(ki ,t)
is formally equivalent to F(k,t) in the bulk where k
5u( l /L,m/L,n/L)u is the three-dimensional counterpart
ki , andl, m, andn are integers@2–4#. This reflects the highe
symmetry of the bulk fluid compared with the confined o
since the latter is exposed to a (z-dependent! external poten-
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tial representing the pore walls.
Fitting the hydrodynamic expression forF(ki ,t) to MD

data permits one to determine the set of material constanin
principle. However, a number of additional assumptions a
required to deriveF(ki ,t) in the hydrodynamic regime@1#.
Thus, the resulting expression is correct only to orderO(ki

2).
Unfortunately, central processing unit~CPU!-time restric-
tions in the MD simulations do not permit one to makeki
small ~i.e., L large! enough so that higher-order terms a
negligible. Hence, the set of material constants obtai
from the fit to the MD data depends onki ~i.e., onL) in a
nonanalytic form over theki range accessible. Any extrapo
lation to the infinite-system limit~i.e., ki→0) must be re-
garded unsafe and the values extracted from such an extr
lation potentially erroneous@2#.

To obtain reliable estimates for the set of material co
stants determiningF(ki ,t) in the hydrodynamic regime, we
proposed an alternative approach based upon the mem
function M (ki ,t). The memory function is related to
F(ki ,t) through the Volterra integrodifferential equation th
can be solved numerically forM (ki ,t) using the MD gener-
atedF(ki ,t) as input@1#. We also developed a limiting hy
drodynamic expression forM (ki ,t) having the advantage
that it is exact to all orders ofki unlike F(ki ,t). Hence,
analyzing the numerically obtainedM (ki ,t) via this hydro-
dynamic form gives us the set of transport coefficientsinde-
pendentof ki over a range of system sizes where MD sim
lations are still feasible employing nothing but standa
simulation techniques@5#.

Assuming certain inequalities to hold between the ma
rial constants, it is shown in Ref.@1# that M (ki ,t) should be
a damped oscillatory function of time in the hydrodynam
regime as far as thermodynamically stable states are
cerned. However, as we shall demonstrate in this pape
significant change inM (ki ,t) is observed as one penetrat
©2003 The American Physical Society02-1
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into the regime of metastable thermodynamic states alon
subcritical isotherm either from the low- or high-density si
of the two-phase region. It turns out thatM (ki ,t)→0 irre-
spective ofki and t as one approaches the stability limit
the ~metastable! fluid phase. This change in the ‘‘memory
of density modes eventually enables us to locate the stab
limit of fluids from a dynamical perspective.

Based upon the present results, we predict a qualita
change in the dynamic structure factorS(ki ,v), which is
related toF(ki ,t) through a Laplace transformation. Th
former is frequently measured in light@6,7# or neutron scat-
tering @8# experiments and should exhibit a change from
usual triplet of Brillouin and Rayleigh lines to a singlet ce
tered at the frequencyv50 as one approaches the stabil
limit.

The remaining paper is organized as follows. In Sec.
we introduce our model system. In Secs. III A and III B, w
defineF(ki ,t) andM (ki ,t). Section III C is devoted to the
development of a mean-field theory that we employ to ra
nalize the results of our MD simulations. In Sec. III D, w
summarize basic concepts of stability of thermodynam
phases and their relation to the quantities of interest in
context of this work. Important technical details are summ
rized in Sec. IV A. In Sec. IV B, we determine the stabili
limit of fluid phases and analyze confinement effects in S
IV C. The paper concludes with a summary and discuss
of our findings in Sec. V.

II. THE MODEL

We considerN spherically symmetric molecules interac
ing in a pairwise fashionvia the so-called shifted force po
tential @5#

uf f~r !5H uLJ~r !2uLJ~r c!1uLJ8 ~r c!~r c2r !, r<r c

0, r .r c ,
~2.1!

wherer is the distance between a pair of molecules,uLJ(r ) is
given by

uLJ~r !54eF S s

r D 12

2S s

r D 6G , ~2.2!

wheree is the depth of the attractive well,s is the ‘‘diam-
eter,’’ and uLJ8 (r c)5duLJ(r )/drur 5r c

. In the actual simula-

tions, r c52.5s so that we are dealing with explicitly shor
range interactions. Since the shifted-force potential and
first derivative go to zero continuously atr 5r c , corrections
due to the finite cutoff radiusr c are not required for any o
the quantities of interest. The fluid-substrate interaction
modeled according to the potential function

uf s
[k]~z!52prws2eF2

5 S s

sz/26zD
10

2S s

sz/26zD
4G ,

~2.3!

where ‘‘1 ’’ refers to the lower substrate (k51) located at
zw52sz/2 and ‘‘2 ’’ to the upper one (k52) at zw5
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1sz/2. In Eq. ~2.3!, rws250.79 is the areal density of solid
atoms forming the substrate planes@9#. Since uf s

[k] (z) de-
pends only on the distance of a fluid molecule from the s
strate planes, properties of the confined system are~on an
average! translationally invariant across thex-y plane.

To follow the time evolution of our system, we solv
Newton’s equation numerically using the so-called veloc
Verlet algorithm@5#. To integrate the equation of motion b
this finite-difference scheme, a time step ofdt54.63
31023 in the customary dimensionless~i.e., ‘‘reduced’’!
units is used. Energy is then conserved to about 231024 for
a typical run of 105 time steps. Reduced units are also us
for all other quantities of interest, which are summarized
Table 1 of Ref.@1#.

III. THEORY

A. The intermediate scattering function

In Ref. @1#, we showed that microscopically the interm
diate scattering function for a fluid confined to a slit po
with chemically homogeneous substrate surfaces can be
ten as

F~ki ,t !5S21~ki!^r~2ki!r~ki ,t !&, ~3.1!

whereki5(kx ,ky)PR2 is a wave vector in reciprocal spac
Here S(ki)5^r(2ki)r(ki)& is the static structure facto
@10#,

r~ki ,t !5 (
m51

N

exp@2 iki•Rm~ t !# ~3.2!

is the Fourier component of the local density,Rm is the po-
sition of particlem in the x-y plane, andr(ki) is shorthand
notation for r(ki,0). The dependence ofF on ki5ukiu re-
flects the translational invariance of system properties in
x-y plane.

Equation~3.1! may be Laplace transformed to give

F~ki ,s!5S~ki!
21^r~2ki!r~ki ,s!&

5
~s1aki

2!~s1biki
2!1~g21!v i

2ki
2/g

s~s1aki
2!~s1biki

2!1sv i
2ki

21~a/g!v i
2ki

4
,

~3.3!

where the second line follows from hydrodynamic consid
ations detailed in Ref.@1#. In Eq. ~3.3!, a[l/rcAsz

(l ther-

mal conductivity andcAsz
isochoric heat capacity!, bi is the

lateral kinematic viscosity,g[ct i
/cAsz

(ct i
heat capacity at

constant transverse stresst i), and v i is the adiabatic, in-
plane velocity of sound. We may then transformF(ki ,s)
back to the time domain following the procedure describ
in detail in Ref.@1# to get

F~ki ,t !5
g21

g
exp~2DTki

2t !1
1

g
exp~2Gki

2t !@cos~v ikit !

1d~ki!sin~v ikit !#, ~3.4!
2-2
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where the thermal diffusivity is defined as

DT[
a

g
, ~3.5!

the sound attenuation coefficient as

G[
1

2
@DT~g21!1bi#, ~3.6!

and

d~ki![@G1~g21!DT#
ki

v i
. ~3.7!

It is important to realize that the expression in the seco
line of Eq. ~3.3! is exact in the hydrodynamic regime
whereas additional assumptions are required to obtain
equivalent expression in the time domain@see Eq.~3.4!#. In
the hydrodynamic regime, the latter is therefore onlyap-
proximatelycorrect to orderO(ki

2) @1#.
Unfortunately, in MD, a lower limit ofki}L21 exists be-

low which ki cannot be reduced easily because the size
the simulation cell cannot be made arbitrarily large. The
ter is due to the CPU time required to simulate the tempo
evolution of increasingly larger many-particle systems wh
becomes prohibitive sooner or later. Thus, if Eq.~3.4! is
fitted to data generated in MD simulationsvia Eqs.~3.1! and
~3.2! over the typical range of wave numberski accessible,
the set of coefficients$g,v i ,DT ,G% turns out to depend onki
even though excellent fits are usually obtained@see Figs. 1~a!
and 2~a!#. Since, on the other hand, the dependence
$g,v i ,DT ,G% onki is unknown analytically, an extrapolatio
of these quantities to the thermodynamic limit (ki→0 or
equivalentlyL→`, N/Asz ,sz5const, andA5L2) is gener-
ally prohibited.

B. Memory function

A determination of$g,v i ,DT ,G% in the hydrodynamic re-
gime but independentof the size of the simulation system
~i.e., independent ofki) is, however, possible following the
recipe proposed in Ref.@1#. It is based on solving Volterra’s
equation

2
dF~ki ,t !

dt
5E

0

t

dt8M ~ki ,t8!F~ki ,t2t8!, ; ki

~3.8!

numerically for the memory kernelM (ki ,t) using as input
F(ki ,t) from MD. This can be achieved by employing a
algorithm suggested by Berne and Harp@11#.

Equation~3.8! can also be Laplace transformed and th
solved analytically for M (ki ,s) using also Eq.~3.3!. The
result can be transformed back into the time domain to g
@1#

M ~ki ,t !5M0~ki!exp~2x8t !@cosh~ ix9t !2 iy9sinh~ ix9t !#,
~3.9!
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M0~ki!5
v i

2ki
2

g
, ~3.10a!

x85S G1
DT

2 D ki
2 , ~3.10b!

x95v ikiAg21

g
1O~ki

2!.v ikiAg21

g
, ~3.10c!

y95AM0~g21!

x92
21.0. ~3.10d!

At this point, it is important to realize that the backtransfo
mation of the analytic expression forM (ki ,s) into the time
domain does not require any additional simplifying assum
tions like the ones invoked to get Eq.~3.4! from Eq. ~3.3!.
Thus, unlike Eq.~3.4!, Eq. ~3.9! is exactto all orders inki in
the hydrodynamic regime@1#.

Sincex9PR, Eqs.~3.10c! and ~3.10d! permit to simplify
the expression given in Eq.~3.9! and rewrite it as

M ~ki ,t !5M0~ki!exp~2x8t !cos~x9t !. ~3.11!

FIG. 1. ~a! Intermediate scattering functionF(ki ,t) as a func-
tion of time t for bulk fluid; (h) ki50.22, (s) ki50.38; the solid
line is the fit of Eq.~3.4! to MD data.~b! as ~a!, but for M (ki ,t);
the solid line is the fit of Eq.~3.11! to discrete data points.
2-3
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Parameters$M0 ,x8,x9% can be determined by fitting Eq
~3.11! to the numerical solution of Eq.~3.8!. As before, for
F(ki ,t) an excellent representation of the MD-genera
data is achieved@see Figs. 1~b! and 2~b!#.

C. Mean-field theory

At this point, it seems worthwhile to briefly recall th
hydrodynamic expression forF(ki ,t) @see Eq.~3.4!#. One
realizes that among the four constants determining its fu
tional form, two~i.e., g andv i) play a somewhat more dis
tinguished role. Not only doesg control the relative contri-
bution of the two exponential terms in Eq.~3.4!, it also
enters Eq.~3.4! in a more indirect way through Eqs.~3.5!,
~3.6!, and~3.7!; v i , on the other hand, is solely responsib
for the period of oscillations inF(ki ,t) ~regardingki as con-
stant!. Thus, for the subsequent analysis of the dynamics
the vicinity of fluid phase transitions, it seems justified
focus ong andv i . Moreover, since

g[
ct i

cAsz

, ~3.12a!

v i[2
g

m S ]t i

]r D
N,T,sz

~3.12b!

FIG. 2. ~a! Intermediate scattering functionF(ki ,t) as a func-
tion of time t for ki50.3142; (h) bulk fluid, (n) confined fluid,
sz54.1; (s) confined fluid,sz51.9. ~b! as ~a!, but for M (ki ,t).
05120
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are purely thermodynamic quantities, we employ a me
field theory to investigate their behavior as one approac
the spinodal. In Eq.~3.12a!, m is the mass of a molecule.

The analysis ofg andv i departs from the mean-field fre
energyF of a confined fluid developed in Ref.@12# where it
was shown that

F52kBTH N lnF12br

rL3 G1NJ 1NC~sz!2Nap~sz!r.

~3.13!

In Eq. ~3.13!, kB is Boltzmann’s constant,r is the mean
density of the confined fluid,L5h/A2pmkBT is the thermal
de Broglie wavelength (h Planck’s constant!, b52ps3/3 is
the volume excluded to a pair of hard spheres of diametes,
C(sz) is the external potential exerted on the confined flu
by two planar, chemically homogeneous substrates separ
by a distancesz , and

ap~sz!5abF12
3s

4~sz22s!
1

1

8s3~sz22s!3G<ab .

~3.14!

In Eq. ~3.14!, ab54eb is the contribution of intermolecula
attraction to the bulk free energy wheree is the depth of the
attractive well. In the limitsz→`, C(sz)→0 and ap(sz)
→ab such that Eq.~3.13! reduces to the well-known expres
sion for the free energy of a van der Waals bulk fluid@13#.

From Eq.~3.13! and the thermodynamic relation@12#

dF52SdT1mdN1t iszdA1tzzAdsz , ~3.15!

the equation of state

t i52
r2

N S ]F
]r D

T,N,sz

52
rkBT

12br
1ap~sz!r

2 ~3.16!

readily emerges. In Eq.~3.15!, S denotes entropy,m is the
chemical potential,t i[

1
2 (txx1tyy) and tzz are diagonal

components of the stress tensor, andA is the area of the
~planar! solid-fluid interface.

From Eq.~3.13! and the definition,

cAsz
[

T

N S ]2F
]T2D

N,A,sz

5
T

N

]

]T FNkB

2
2kBN lnS rL3

12br D G5
3kB

2

~3.17!

is obtained which is the ideal-gas expression as expe
from mean-field theory. Moreover, thermodynamic cons
tency requires the expression

g5
ct i

cAsz

511
Ta i

2

rcAsz
k i

~3.18!

to hold @14#. From Eq.~3.18!, the expansion coefficient
2-4
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a i[2
1

r S ]r

]TD
N,t i ,sz

5
kB~12br!

kBT22ap~sz!r~12br!2

~3.19!

and the transverse isothermal compressibility

k i[2
1

r S ]r

]t i
D

T,N,sz

5
~12br!2

r@kBT22ap~sz!r~12br!2#

~3.20!

are obtained with the aid of Eq.~3.16!. Substituting now the
far right sides of Eqs.~3.17!, ~3.19!, and ~3.20! into Eq.
~3.18!, we finally obtain

g511
2kBT

3kBT26ap~sz!r~12br!2
. ~3.21!

In the limit of an ideal gas,r→0 and we recoverg id5 5
3

from Eq. ~3.21! as we must. This limiting value is also ob
tained if the ideal gas at arbitrarily high density is perceiv
as being composed of attractionless (ab50) mathematical
points (s50 and thereforeb50). Under these assumption
a i

id51/T, k i
id51/rkBT, andg id5 5

3 is again recovered from
Eq. ~3.18! using also Eq.~3.17!.

Substituting Eqs.~3.18!, ~3.19!, and ~3.20! into Eq.
~3.12b!, we obtain

v i5A 1

rk i
1

T

r2mcAsz

S a i

k i
D 2

5
1

12brAkBT22ap~sz!r~12br!21
kB

2T

mcAsz

,

~3.22!

which we subject to further analysis in Sec. III D below.

D. Stability of thermodynamic phases

In an open thermodynamic system metastable- or g
ballystable states are characterized by minima of the gr
potential density

v5t i~m,T,A,sz!. ~3.23!

Equation~3.23! follows from Eq.~3.15! through a Legendre
transformation

dV[d~F2mN! ~3.24!

and by noting thatV5Aszv is a homogeneous function o
degree one inA provided all its other natural variables re
main constant. Over a certain range of chemical potentials~at
fixed T, A, sz), it may turn out that several minima ofv exist
at the samem. In other words, a range ofm ’s exists such that
v(m) is a multivalued function, where the lowest valueva

corresponds to the thermodynamically stable statea whereas
the others refer to metastable states. In general, therm
namics requires the inequalities
05120
d
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S ]va

]m D
T,A,sz

52ra,0, ~3.25a!

S ]2va

]m2 D
T,A,sz

52rak i
a,0, ;a ~3.25b!

to hold irrespective ofT.
Mathematically speaking, at constantT, v(m) is always a

concave@see Eq.~3.25b!#, monotonic@see Eq.~3.25a!# func-
tion with slope and curvature being determined by the nat
of the thermodynamic phase under consideration~i.e., byra

andk i
a). Because of concavity and monotonicity and sin

in general,raÞrb for subcritical thermodynamic states, in
tersections betweenva andvb exist at which pairs of phase
a and b coexist. For a givenT, the chemical potential a
coexistencemx

ab is obtained by solving the equation

va~mx
ab!5vb~mx

ab!, T,A,sz5const. ~3.26!

If va(mx
ab)5vb(mx

ab) is the absolute minimum of the
grand-potential density,a and b are thermodynamically
stable, coexisting phases.

Suppose, now that the densities of the thermodynamic
stable coexisting phases satisfy the inequality

ra.rb ~3.27!

such that form,mx
ab the thermodynamically stable phase

a, whereas form.mx
ab this is the case for phaseb @see Eq.

~3.25a!#. Consequently,a is metastable form.mx
ab ,

whereas this is true forb over the corresponding rangem
,mx

ab . Metastable branches end at the stability limit.
Within the scope of mean-field theory, this stability lim

is demarcated by a divergence of the isothermal compr
ibility defined in Eq.~3.20!. The divergence occurs at a de
sity rs that defines the location of the so-called spinodal
the given temperatureT. From Eqs.~3.20! and ~3.21!, it is
straightforward to verify that the divergence ofk i implies a
divergence ofg since

k i5
3

2

~12br!2

rkBT
~g21! ~3.28!

and the factor (12brs)
2/rskBT remains finite at the spinoda

for T.0. This is demonstrated in the Appendix where e
plicit expressions forrs are derived@see Eqs.~A11! and
~A12!#.

Contrary tog, v i remains finite and nonzero along th
spinodal @15#. This follows from Eqs.~3.19!, ~3.20!, and
~A2! which permit us to rewrite Eq.~3.22! as

v i5
1

12brs
A kB

2T

mcAsz

5
1

12brs
A2

3

kBT

m
, ~3.29!

where the far right side follows from Eq.~3.17!. Equation
~3.29! shows that at mean-field level and for thermodynam
states along the spinodal, the velocity of sound depends
2-5
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on the volumeb, excluded to a pair of hard spheres, but
independent of the attraction between a pair of fluid m
ecules.

IV. RESULTS

A. Technical details

To locate phase transitions in bulk and confined fluids,
employ grand canonical ensemble Monte Carlo~GCEMC!
simulations permitting us to determinev(m) for various
temperaturesT from Eq.~3.23! using a molecular expressio
for t i ~see, for example, Eq.~13! in Ref. @16#!. Typical re-
sults plotted in Fig. 3 illustrate the precision with which
solution of Eq. ~3.26! can be obtained numerically. Eve
though Fig. 3 shows that whereas it is possible in GCEMC
simulate states well inside the metastable regime of ei
gas or liquid, it is generally not possible to go directly to t
stability limit ~i.e., the spinodal!. The reason is that the loca
minimum of v at the equilibrium mean density becom
rather shallow, and density fluctuations increase simu
neously as one approaches the spinodal. However, the
lower the minimum ofv, the larger is the probability that
sufficiently large density fluctuation may eventually aris
which may then carry the system over the grand-poten
barrier separating the metastable state from the glob
stable one at a lowerv. To locate the spinodal, we therefo
turn to MD simulations in the microcanonical ensemble
ing as input the mean number of fluid molecules obtain
from GCEMC for a givenm andT, and states off the spin
odal. This assumes implicitly that for the typical system siz
used in this study, the principle of equivalence of statisti
physical ensembles applies@17#. The MD simulations are
performed according to the conditions summarized in R
@1#.

The subsequent analysis ofM (ki ,t) to obtaing andv i ,
which are the quantities of key interest in the present cont
then proceeds as follows. From Eqs.~3.10a! and~3.11!, it is
clear that the scaling laws

M0~ki!}ki
2 , ~4.1a!

x92}ki
2 ~4.1b!

FIG. 3. Grand-potential densityv(m) for T50.8. Symbols refer
to bulk gas (s), bulk liquid (d), confined ‘‘gas’’ (h), and con-
fined liquid (j) (sz510). Solid lines are intended to guide the ey
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should hold in the hydrodynamic regime~see also Figs. 2, 3
5 and Secs. IV B, IV C of Ref.@1#!. Let m1 andm2 be con-
stants of proportionality in the respective scaling laws
M0 andx9 @see Eqs.~4.1!# which are determined as slopes
linear least squares fits. It is then easy to verify from E
~3.10a! and ~3.10c! that

g511
m1

m2
, ~4.2a!

v i5Am11m2 ~4.2b!

provide a means to calculateg andv i , simultaneously.

B. Locating the bulk spinodal

In Fig. 4, we plot 1/g as a function ofr andT50.8. Two
branches at low~er! and high~er! densities are clearly discern
ible. Asr increases in the low-density regime, 1/g decreases,
whereas in the high-density regime it rises withr. To check
the accuracy ofg obtained from the procedure detailed
Sec. IV A, we compare with results from Monte Carlo sim
lations in the mixed isostress-isostrain ensemble introdu
in Ref. @14#. In the mixed isostress-isostrain ensemble~fixed
N, T, t i , sz), the molar isostress heat capacity is

ct i
5

3

2
kB1

1

NkBT2
@^H̃2&2^H̃&2#, ~4.3!

where the~configurational part of the average! enthalpy is
given by

^H̃&52t i^A&sz1^U& ~4.4!

and ^U& is the ~average! configurational energy@14#. In the
canonical ensemble~fixed N, T, A, sz), the~molar! isochoric
heat capacity is given by

cAsz
5

3

2
kB1

1

NkBT2
@^U2&2^U&2#. ~4.5!

.

FIG. 4. Ratio 1/g of isochoric and isostress heat capacities a
function of density forT50.8 in the bulk. Symbols refer to result
obtained by fitting Eq.~3.4! to MD data (h) and to data obtained in
Monte Carlo simulations (j) ~see text!. The solid line represents
the fit of Eq.~3.21!.
2-6
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Angular brackets indicate averages in the respective
semble. Thus, Eqs.~3.18! and ~4.3!–~4.5! offer a possibility
to calculateg from a sequence of Monte Carlo simulations
a generalized isostress-isostrain and the canonical ensem
Plots in Fig. 4 indicate not only the excellent mutual agre
ment between both data sets but also the high quality of
fit provided by Eq.~3.21!. From the fit, we estimaters

ld

.0.12 on the low~er!-density~i.e., gas! side, whereas on the
high~er!–density~i.e., liquid! siders

hd.0.58. Note that in the
limit r→0, the ideal-gas valueg id5 5

3 is recovered from the
plot in Fig. 4 as expected from Eq.~3.21!.

If the temperature increases, one expects the densitie
the gas and liquid branches of the spinodal to become m
and more alike as one can verify from Eq.~A7b! which
implies

lim
T→Tcb

2

~rs
g2rs

l !} lim
T→Tcb

2

sin
w~T!

3
50. ~4.6!

In Eq. ~4.6!, Tcb is the bulk critical temperature defined
Eq. ~A9!. Plots in Fig. 5 forT50.7 and 0.8 confirm Eq
~4.6!, because sin@w(T)/3# decreases monotonically with in
creasingT @see Eq.~A13!#.

From Fig. 5, one also notices that for a sufficiently hi
temperatureT51.5, the divergence ofg apparently disap-
pears, that is, 1/g exhibits a minimum at some density rath
than going to zero. From Eq.~3.21!, it is straightforward to
verify that at mean-field level

S ]g21

]r D
T

52
1

g2 S ]g

]r D
T

5
12ap~sz!kBT~12br!~3br21!

@5kBT26ap~sz!r~12br!2#2

5
!

0 ~4.7!

is the necessary condition for an extremum of 1/g to exist.
Formally, Eq.~4.7! has solutionr51/b, which is physically
not sensible since it corresponds to an infinite value oft i in
Eq. ~3.16!, and r5rc51/3b corresponding to the critica
density. From the plot in Fig. 5, a rough estimate ofrc
.0.37 is obtained which is only 14% higher than the mu
more accurate resultrc50.3197 of Wilding@18# who used a

FIG. 5. As Fig. 4, but for various temperaturesT50.7 (h), T
50.8 (j), andT51.5 (s). Solid lines represent fits of Eq.~3.21!.
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sophisticated weigthed-histogram Monte Carlo technique
should be noted, however, that while also using a poten
cutoff r c52.5, Wilding left his intermolecular potential un
shifted, that is, in his expression foruf f the termsuLJ(r c) as
well asuLJ8 (r c)(r c2r ) were absent. According to Smit@19#,
this should have only a marginal effect onrc but a significant
impact on the critical temperature. However, we note that
point of our work is not to estimate with high accuracy t
critical-point location for which a mean-field theory wou
be inadequate anyhow.

As already emphasized in Sec. III D,v i should remain
finite and nonzero at the spinodal@15#. Plots in Fig. 6 support
this notion. It seems particularly noteworthy that data poi
off the spinodal, which were obtained through the proced
detailed in Sec. IV A@see Eq.~4.2b!#, are fully consistent
with the ones located directly on the spinodal, calcula
independently from Eq.~3.29!, whereb from the fit to the
corresponding data for 1/g plotted in Fig. 5 was used. As
expected, v i changes discontinuously at the spinod
whereas it varies continuously and monotonically for sup
critical thermodynamic states as one can infer also from
plots in Fig. 6.

C. Confinement effects

If the fluid is now confined to a slit pore ofsz510, the
scenario illustrated by Figs. 4 and 5 changes in a signific
way. This can be seen from Fig. 7 where we plot 1/g as a
function ofr for the bulk and for the confined system at th
same temperatureT50.7. From the figure, one notices th
apart from a shift in density, the high-density branchr
.0.6) remains qualitatively unaffected by confinement.
the low-density side, however, 1/g for the confined fluid
does not immediately go to zero but exhibits a minimu
apparently not accounted for by the mean-field equat
~3.21!. Even though 1/g vanishes forrs

ld.0.4, it does not go
monotonically to the ideal-gas value as predicted by
mean-field expression, Eq. ~4.7!, which implies
(]g21/]r)T,0 for all densitiesr<rs

ld @see Eq.~A11!#.
However, numericallyg id5 5

3 is recovered in the limitr
→0 as it must@see Eq.~3.21!#.

FIG. 6. As Fig. 5, but forv i ; T50.7 (h), T50.8 (s), and
T51.5 (n) calculated from Eq.~4.2b!. Filled symbols represen
values at the spinodal calculated from Eq.~3.29!; T50.7 (j) and
T50.8 (d).
2-7
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To understand the origin of this minimum, we analyze
Fig. 8 the local density

r~z![
^N~z!&
sxsydz

, ~4.8!

whereN(z) is the number of molecules located atz6dz/2
(dz50.05) in a given configuration and̂•••& indicates an
average in the grand canonical ensemble. Over the den
range 0.06&r&0.34, where 1/g exhibits minimum parallel
plots in Fig. 8 show that a thin film of fluid is adsorbed o
each substrate which thickens asr ~i.e., m) increases. This
film consists of individual layers of molecules as reflected
the nonmonotonic dependence ofr(z) on z, where maxima
correspond to the center of mass of each layer. On accou
the diminishing fluid-substrate attraction, these layers
come increasingly less pronounced as one departs from
substrate surface. However,r(z) assumes rather low~i.e.,
gaslike! values around the center of the slit pore reflect
the low probability of finding fluid molecules. Asm in-
creases, capillary condensation eventually sets in and
gaslike inner part of the pore is then occupied by hig

FIG. 7. As Fig. 4, but forT50.7 in the bulk (h) and a confined
fluid (sz510) (j). The dashed line represents a fit of Eq.~3.21! to
all bulk data points. The solid line is obtained by a fit of Eq.~3.21!
only to data points along the high-density branch of the confi
fluid (r.0.7).

FIG. 8. Local densityr(z) as a function of positionz between
lower (z/sz520.5) and upper (z/sz510.5) substrates; (h) r
50.06, (j) r50.12, (s) r50.31, and (d) r50.34 ~see Fig. 7!.
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density fluid. For the present choice of system paramet
we did not observe prewetting but rather a steady and c
tinuous increase in the thickness of the adsorbed film~see
also Sec. V!. The approach of the stability limit of the ad
sorbed film is again reflected by 1/g going to zero at the
spinodalrs

ld.0.4, which is now much higher than for th
corresponding bulk system~see Fig. 7!.

Since the adsorbed film is highly inhomogeneous,
seems not surprising that the associated change in 1/g cannot
be accounted for by the simple mean-field theory summ
rized in Sec. III C which explicitly assumes ahomogeneous
confined phase@12#. Once the fluid underwent capillary con
densation, however, the present pore widthsz510 is large
enough for a homogeneous midsection~centered onz50) of
the confined fluid to exist. Then, the mean-field treatm
becomes more appropriate and consequently data point
the liquid side of the spinodal (r.0.6, see Fig. 7! are rep-
resented properly by Eq.~3.21! ~see Fig. 7!.

The divergence ofg at the spinodal has consequences
the decorrelation of density modes reflected by the deca
F(ki ,t) as time passes. Noticing from Eqs.~3.5!–~3.7! that

lim
g→`

DT50, ~4.9a!

lim
g→`

G5
1

2
~a1bi!, ~4.9b!

lim
g→`

d~ki!5~3a1bi!
ki

3v i
~4.9c!

and one readily concludes from Eq.~3.4! that

lim
g→`

F~ki ,t !51, ; t, ~4.10!

where we implicitly assumea, bi , andv i to remain finite at
the spinodal. Plots in Fig. 9 corroborate this notion. Hen
as one approaches the stability limit of either bulk or co
fined phases, there is a significant lack of decorrelation in
collective dynamics. Our results would suggest that deco
lation is completely absent for thermodynamic states loca
directly on the spinodal. Intuitively, it might be easier t
grasp this effect in terms of the memory kernelM (ki ,t). For
example, taking the Laplace transform of Volterra’s equat
@see Eq.~3.8!# and noticing that the Laplace transform
F(ki ,t) in Eq. ~4.10! is 1/s, one hasM (ki ,s)50. A trivial
backtransformation to the time domain leads toM (ki ,t)
50. In other words, collective dynamic modes for sta
directly on the spinodal completely lack any ‘‘memory’’ o
their past.

V. SUMMARY AND CONCLUSIONS

In this work, we are concerned with extending the ana
sis of F(ki ,t) described in Ref.@1# to thermodynamic state
in the vicinity of a fluid phase transition. Our results sho
that as one penetrates into the metastable regime of
phases, decorrelation of propagating collective~density!

d
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COLLECTIVE DYNAMICS NEAR FLUID PHASE TRANSITIONS PHYSICAL REVIEW E67, 051202 ~2003!
modes becomes increasingly slower; as the fluid reache
stability limit ~i.e., at the locus of the spinodal!, a decorrela-
tion of these modes is practically absent. This becomes
parent fromF(ki ,t) that remains nearly unity for all times

Within a mean-field treatment, the concept of a spinoda
associated with a divergence of the isothermal compress
ity. Sincek i is directly proportional to the ratio of heat ca
pacities g, which is one of the parameters governing t
shape ofF(ki ,t) in the hydrodynamic regime, the increa
ingly slow decay ofF(ki ,t) with time can be ascribed to
divergence ofg at the spinodal. Obviously,g can diverge
only for subcritical temperatures. Forsupercritical tempera-
tures, on the other hand,g passes through a maximum (1/g
passes through a minimum! at the critical density of the fluid
Thus, for supercritical states, theF(ki ,t) remains a damped
oscillatory function of time. Only quantitative changes
amplitude and damping characteristics of these oscillati
reflect changes in the thermodynamic state.

Unfortunately, the mean-field theory is only of limited u
as far as confined fluids are concerned. It describes corre
the divergence ofg as one approaches the spinodal from
high~er!-density~i.e., liquid! side of the phase diagram, bu
fails to account for the more complex variation ofg on the
low~er!-density side of the phase diagram. The more co
plex dependence ofg for low~er!-density states is a result o
the growth of fluid layers on each substrate prior to capill
condensation, whereupong diverges in a qualitatively simi-

FIG. 9. As Fig. 1~a!, but for confined fluids (sz510) at various
densities andki50.25; ~a! r50.1 (m), r50.2 (d), r50.4 (j);
~b! r50.79 (n), r50.75 (s), r50.72 (h) ~see also Fig. 7!.
Solid lines are fits of Eq.~3.4! intended to guide the eye.
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lar fashion as observed before in the bulk. Since the me
field theory employed here is based upon the explicit
sumption that the pore phase is homogeneous in all th
spatial dimensions, it seems not surprising that it cannot
count for effects associated with structural changes in
highly inhomogeneous confined phase.

One may also speculate that if multilayer adsorption
accompanied by a prewetting transition thatg may show two
divergences: one associated with the coexistence of mi
scopically thin films of different thicknesses~i.e., the prewet-
ting transition! and another one associated with the cond
sation of such a film~i.e., capillary condensation!. Since the
present system did not exhibit a prewetting transition, we
currently extending our study to a case where it seems m
likely that such a prewetting transition may, in fact, occur

Our study may also have important repercussions for s
tering experiments in the vicinity of a phase transition
confined fluids. For thermodynamically stable states, the
namic structure factorS(ki ,v), which is measured in light
scattering experiments, consists of three lines, namely,
Rayleigh peak centered at the frequencyv50 and two Bril-
louin peaks shifted byDv56v iki (ki→0) relative to the
Rayleigh line. SinceS(ki ,v) is related toF(ki ,t) through a
Laplace transformation, it is clear that as one approaches
spinodal@whereF(ki ,t)51] the set of Brillouin and Ray-
leigh lines should be replaced by a single line such that
rectly at the spinodalS(ki ,v)5d(v). This change in
S(ki ,v), illustrated by the plots in Fig. 10 for liquidlike
states of the confined fluid, should be detectable in scatte
experiments on fluids confined to ordered porous matri
such as MCM-41 or SBA-15 types of materials, and sho
therefore provide experimental insight into the collective d
namics and its relation to the phase behavior of confined
bulk fluids.
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FIG. 10. Dynamic structure factorS(ki ,v) as a function of
frequencyv for confined fluid (T50.7, sz510, ki50.25). Curves
are shown for densitiesr50.79 (h), 0.75 (j), and 0.72 (s) and
lines are fits of Eq.~4.11! of Ref. @1# intended to guide the eye~see
also Fig. 9!.
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APPENDIX: LOCATION OF THE SPINODAL

At mean-field level, thermodynamic states along the sp
odal are characterized by an infinitely large isothermal co
pressibility, that is, they satisfy the equation

1

k i~rs!
50, ~A1!

which is equivalent to@see Eq.~3.20!#

kBT22ap~sz!rs~12brs!
250. ~A2!

The zeros of this cubic polynomial can be found analy
cally. Therefore, we introduce the transformation

rs→ r̃s5rs2
2

3b
, ~A3!

which permits us to rewrite Eq.~A2! as

r̃s
32

1

3b2
r̃s1

2

27b3
2

kBT

2ap~sz!b
50. ~A4!

Equation~A4! is of the general formr̃s
31pr̃s1q50, where

p52
1

3b2
, ~A5a!

q5
2

27b3
2

kBT

2ap~sz!b
. ~A5b!

Hence, Eq.~A4! is amenable to an analytic solution using t
Cardanic formulas@20#. With these identifications, the thre
real solutions of Eq.~A4! can be cast compactly as

r̃s
[k]~T!52A3 xcosFw~T!12~k21!p

3 G , k51,2,3,

~A6!

where

x[A2
p3

27
5

1

27b3
, ~A7a!

w~T![arccosS 2
q

2x D5arccosS 2T2Tcp~sz!

Tcp~sz!
D ,

~A7b!

and Eqs.~A5! have also been used. In Eq.~A7b!, we have
also utilized the fact that the pore critical temperatureTcp(sz)
is defined as@12#

kBTcp~sz!5
8ap~sz!

27b
. ~A8!

Because of Eq.~3.14!,

lim
sz→`

Tcp~sz!5Tcb, ~A9!
05120
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whereTcb is the critical temperature in the bulk. Moreove
introducing the critical densityrc ~of bulk and confined
fluid! through@12#

rc5
1

3b
~A10!

and reverting the transformation@see Eq.~A3!# one can eas-
ily verify that the density of states along the low-density~ld!
branch of the spinodal is given by

rs
ld~T![rs

[2]~T!52rcF11cosS w~T!12p

3 D G , ~A11!

whereas the density along the high-density branch is
tained from

rs
hd~T![rs

[3]~T!52rcF11cosS w~T!14p

3 D G . ~A12!

The fact that Eqs.~A11! and ~A12! describe low- and high-
density branches of the spinodal, respectively, can be ver
by realizing that the spinodal is defined only for temperatu
in the range 0<T<Tcp(sz) so thatw(T) is defined over the
range

p>w~T!>0 ~A13!

and therefore

0<rs
ld~T!<rcp, ~A14a!

3rcp.rs
hd~T!>rcp. ~A14b!

The solution fork51 in Eq.~A6! is unphysical because i
gives rise to a density exceeding 3rcp over the range of val-
uesw(T) can attain. For these densities,t i in Eq. ~3.16! is
positive indicating that the fluid is mechanically unstable.

In Sec. III C, it was also argued that the inequality

~12brs!
2

rskBT
,`, T.0 ~A15!

holds such that a divergence ofk i directly implies a diver-
gence ofg. Replacing in the inequality~A15!, rs by either
rs

ld or rs
hd from Eqs.~A11! or ~A12!, respectively, it is clear

that the numerator of the resulting expression remains fi
since the density on the spinodal is finite. Moreover, it c
easily be verified that the denominator contains the facto

TF11cosS w~T!1np

3 D G>0, ~A16!

where n52 for rs
ld and n54 for rs

hd, and the equal sign
holds only for T50. Thus, forT.0, the left side of the
inequality ~A15! is indeed finite and positive as it must@see
Eq. ~3.28!#.
2-10



S

p-

er

COLLECTIVE DYNAMICS NEAR FLUID PHASE TRANSITIONS PHYSICAL REVIEW E67, 051202 ~2003!
@1# F. Porcheron and M. Schoen, Phys. Rev. E66, 041205~2002!.
@2# M. Schoen, R. Vogelsang, and C. Hoheisel, Mol. Phys.57, 445

~1986!.
@3# R. D. Mountain, Rev. Mod. Phys.38, 205 ~1966!.
@4# D. McIntyre and J. V. Sengers, inPhysics of Simple Liquids,

edited by H. N. V. Temperley, J. S. Rowlinson, and G.
Rushbrooke~North-Holland, Amsterdam, 1968!, p. 480.

@5# M. P. Allen and D. J. Tildesley,Computer Simulation of Liq-
uids ~Academic, London, 1987!.

@6# W. Brown, Dynamic Light Scattering~Clarendon, Oxford,
1993!.

@7# B. J. Berne and R. Pecora,Dynamic Light Scattering~Wiley,
New York, 1976!.

@8# C.H. de Novion, Radiat. Phys. Chem.51, 637 ~1998!.
@9# Because of a typographical errorrss

251.0 in Ref.@1# should
be replaced by the value 0.79 given in Sec. II.

@10# J. P. Hansen and I. R. McDonald,Theory of Simple Liquids,
05120
.

2nd ed.~Academic, London, 1986!.
@11# B. J. Berne and G. D. Harp, Adv. Chem. Phys.17, 63 ~1970!.
@12# M. Schoen and D. J. Diestler, J. Chem. Phys.109, 5596

~1998!.
@13# R. Balian, From Microphysics to Macrophysics~Springer-

Verlag, Berlin, 1991!, Vol. I, p. 400.
@14# M. Schoen, Physica A270, 353 ~1999!.
@15# F. Kohler,The Liquid State~Verlag Chemie, Weinheim, 1972!.
@16# S. Sacquin, M. Schoen, and A. H. Fuchs, Mol. Phys.100, 2971

~2002!.
@17# T. L. Hill, Statistical Mechanics, Principles and Selected A

plications ~Dover, Mineola, 1987!.
@18# N. Wilding, Phys. Rev. E52, 602 ~1995!.
@19# B. Smit, J. Chem. Phys.96, 8639~1992!.
@20# I. N. Bronstein and K. A. Semendjajew,Taschenbuch der

Mathematik, edited by G. Grosche, V. Ziegler, and D. Ziegl
~Teubner Verlagsgesellschaft, Stuttgart, 1991!, p. 131.
2-11


