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Collective dynamics near fluid phase transitions
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By means of molecular dynamics simulations, we calculate the intermediate scattering fun@tjot)
wherek is the wave number antdis the time. We focus on thermodynamic states in the vicinity of a fluid
phase transition in bulk and confined systems which we locate in parallel Monte Carlo simulations in the grand
canonical ensemble. As one approaches the limit of stability of the (leid its spinodalfrom either low- or
high-density branches of a subcritical isothef(k ,t) becomes increasingly long-range. The apparent lack of
decorrelation in the metastable regime can be understood within the framework of a simple mean-field theory
that links the long-range nature B{k| ,t) to a divergence of the ratio of isostress and isochoric heat capacities
v. Our results suggest that as one approaches the spinodal the dynamic structur&(taco) (o fre-
quency, which is related td=(k,t) through a Laplace transformation, should undergo a qualitative change
from the usual triplet of Brillouin and Rayleigh lines to a singlétf(nction-like peak centered ato=0 for
states directly at the spinodal. This qualitative chang8(ky ,) should be measurable in scattering experi-
ments thereby promoting more detailed insight into the phase behavior and thermodynamic stability of con-
fined and bulk fluids.
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I. INTRODUCTION tial representing the pore walls.
Fitting the hydrodynamic expression féi(k;,t) to MD
In a recent publication, we investigated the collective dy-data permits one to determine the set of material consiants
namics of dense fluids in terms of the intermediate scatteringrinciple. However, a number of additional assumptions are
function by means of equilibriunti.e., microcanonical en- required to derive~(k|,t) in the hydrodynamic regimgl].
semblg¢ molecular dynamic§MD) simulations[1]. We fo-  Thus, the resulting expression is correct only to omekﬁ).
cused, in particular, on fluids confined by chemically homo-Unfortunately, central processing uni€PU-time restric-
geneous, planar substrat@smnoscopic slit popewhere the  tions in the MD simulations do not permit one to make
intermediate scattering function  F(kj,t)*(p  small (i.e., L large) enough so that higher-order terms are
(—kj,0)p(Kk,1)) can be expressed in terms of the time au-negligible. Hence, the set of material constants obtained
tocorrelation function of the Fourier components of the localfrom the fit to the MD data depends & (i.e., onl) in a
density p(k; ,t). Here, kj=(m/L,n/L) is the wave vector nonanalytic form over thé; range accessible. Any extrapo-
andt is time; m andn are integers andl denotes the length Jation to the infinite-system limiti.e., k,—0) must be re-
of the (square computational cell in the-y plane. Since we garded unsafe and the values extracted from such an extrapo-
restrict the analysis to two-dimensional in-plane wave veciation potentially erroneoug].
tors, F depends only on the wave number= |k|| because To obtain reliable estimates for the set of material con-
the confined fluid is homogeneo(and therefore its proper- stants determining (k;,t) in the hydrodynamic regime, we
ties are translationally invarianacross the-y plane parallel proposed an alternative approach based upon the memory
to the confining substrate surfaces. In other words, we corfunction M(k,t). The memory function is related to
sider only modes propagating in a direction parallel to ther (k,t) through the Volterra integrodifferential equation that
slit-pore walls. can be solved numerically fovl (k;,t) using the MD gener-
This restriction permits us to develop a hydrodynamicatedF(k;,t) as input[1]. We also developed a limiting hy-
theory for F(kj,t) starting from z-averaged conservation drodynamic expression foM (k| ,t) having the advantage
laws for heat, mass, and momentum currents eventually leadhat it is exactto all orders ofk; unlike F(kj,t). Hence,
ing to a closed expression féi(k;,t) in terms of a set of analyzing the numerically obtained (k;,t) via this hydro-
material constantfl]. The resulting expression fdt(k;,t)  dynamic form gives us the set of transport coefficiéntie-
is formally equivalent to F(k,t) in the bulk wherek  pendentf k; over a range of system sizes where MD simu-
=|(l/L,m/L,n/L)| is the three-dimensional counterpart of lations are still feasible employing nothing but standard
ki, andl, m, andn are integer$2—4]. This reflects the higher simulation techniquefs].
symmetry of the bulk fluid compared with the confined one  Assuming certain inequalities to hold between the mate-
since the latter is exposed to z2@ependentexternal poten- rial constants, it is shown in Reff1] thatM (kj ,t) should be
a damped oscillatory function of time in the hydrodynamic
regime as far as thermodynamically stable states are con-
*Electronic address: martin.schoen@fluids.tu-berlin.de cerned. However, as we shall demonstrate in this paper, a
Electronic address: fabien.porcheron@fluids.tu-berlin.de significant change iM (k;,t) is observed as one penetrates
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into the regime of metastable thermodynamic states along &s/2. In Eq.(2.3), p,0?=0.79 is the areal density of solid
subcritical isotherm either from the low- or high-density sideatoms forming the substrate plangg. Since uld(z) de-
of the two-phase region. It turns out thslt(k;,t)—0 irre-  pends only on the distance of a fluid molecule from the sub-
spective ofk; andt as one approaches the stability limit of strate planes, properties of the confined system(amnean
the (metastablgfluid phase. This change in the “memory” averagg translationally invariant across they plane.
of density modes eventually enables us to locate the stability To follow the time evolution of our system, we solve
limit of fluids from a dynamical perspective. Newton’s equation numerically using the so-called velocity
Based upon the present results, we predict a qualitativiferlet algorithm[5]. To integrate the equation of motion by
change in the dynamic structure facts(k,»), which is  this finite-difference scheme, a time step ot=4.63
related toF(kj,t) through a Laplace transformation. The X102 in the customary dimensionlesge., “reduced”)
former is frequently measured in ligh,7] or neutron scat- units is used. Energy is then conserved to aboutl@ * for
tering [8] experiments and should exhibit a change from thea typical run of 16 time steps. Reduced units are also used
usual triplet of Brillouin and Rayleigh lines to a singlet cen- for all other quantities of interest, which are summarized in
tered at the frequency =0 as one approaches the stability Table 1 of Ref[1].

limit.

The remaining paper is organized as follows. In Sec. I, IIl. THEORY
we introduce our model system. In Secs. Il A and Il B, we _ _ _ _
defineF (k;,t) andM (k| ,t). Section IIl C is devoted to the A. The intermediate scattering function

development of a mean-field theory that we employ to ratio- |n Ref.[1], we showed that microscopically the interme-
nalize the results of our MD simulations. In Sec. Ill D, we djate scattering function for a fluid confined to a slit pore

summarize basic concepts of stability of thermodynamiGyith chemically homogeneous substrate surfaces can be writ-
phases and their relation to the quantities of interest in thgsp a5

context of this work. Important technical details are summa-

rized in Sec. IV A. In Sec. IV B, we determine the stability F(k ,t)=S*1(k||)<p(—kH)p(kH 1), (3.1
limit of fluid phases and analyze confinement effects in Sec.

IV C. The paper concludes with a summary and discussioMherek;= (k, k,) € R? is a wave vector in reciprocal space.

of our findings in Sec. V. Here S(k))=(p(—k))p(k))) is the static structure factor
[10],
Il. THE MODEL N
We considem spherically symmetric molecules interact- p(K| ,t)=mE:1 exy —iky- Ry(t)] (3.2
ing in a pairwise fashiowia the so-called shifted force po-
tential [5] is the Fourier component of the local densiy, is the po-
, sition of particlem in the x-y plane, andp(k)) is shorthand
Uge(r) = UL(r) —Ua(Te) FUL(re) (re=r), I<Tre notation for p(k;,0). The dependence df on k;=|kj| re-
ff 0, r>rg, flects the translational invariance of system properties in the

(2.))  x-y plane.

) ) ) . Equation(3.1) may be Laplace transformed to give
wherer is the distance between a pair of moleculgs(r) is

given by F(ky,s)=S(k) " Xp(—k)p(kj,s))
W) =4e (3)12_ 3)6 2.2 (s+akf)(s+bykf)+ (y—1)vfke/y
LJ - ’ . = y
r r s(s+akf)(s+bjkf) +sufk? + (al y)vik|
wheree is the depth of the attractive wel; is the “diam- (3.3

eter,” and uLJ(rC)=duLJ(r)/dr|r=rC. In the actual simula-

tions, r.=2.50 so that we are dealing with explicitly short- _.. 0 _
range fnteractions. Since the shifteg-force pgtentél and it's”‘tIons deta|lt_ac_i in Ref1]. .In Eq.(§.3), a=MpCas, ()\_ther-
first derivative go to zero continuously eér, corrections ~Mal conductivity ance,s, isochoric heat capacityby is the
due to the finite cutoff radius, are not required for any of lateral kinematic viscosityy=c; /cxs, (¢, heat capacity at
the quantities of interest. The fluid-substrate interaction isonstant transverse stresy, andy| is the adiabatic, in-
modeled according to the potential function plane velocity of sound. We may then transfofgk,s)

10 . |4 back to the time domain following the procedure described

(sZ/Zt z)

in detail in Ref.[1] to get
where “+” refers to the lower substratekE& 1) located at
Z,=—5,/2 and “—" to the upper one k=2) at z,= +d(kpsin(vkt)], (3.9

where the second line follows from hydrodynamic consider-

uld(z)=2mp,0%€

ag
5\s,/2*z

2.3 -1 1
23 F(ky,t)= ’yTeXF(— DTkﬁt)+;exp(—Fkﬁt)[cos{ka”t)
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where the thermal diffusivity is defined as 1%
a 08 | @
D=—, 3.
=7 (3.5
~ 06}
the sound attenuation coefficient as =
04t
1
I'=5[Dr(y=D+Dby], (3.6 oz |
and 0 :
0 2 4 6 8 10 12 14 16
k
d(k)=[T'+ (7= 1)l - (3.7
It is important to realize that the expression in the second
line of Eq. (3.3 is exactin the hydrodynamic regime,
whereas additional assumptions are required to obtain the
equivalent expression in the time domasee Eq.3.4)]. In 2
the hydrodynamic regime, the latter is therefore oaly §

proximatelycorrect to ordeD(kf) [1].

Unfortunately, in MD, a lower limit 01k||ocL‘1 exists be-
low which k; cannot be reduced easily because the size of
the simulation cell cannot be made arbitrarily large. The lat-
ter is due to the CPU time required to simulate the temporal
evolution of increasingly larger many-particle systems which
becomes prohibitive sooner or later. Thus, if Eg.4) is
fitted to data generated in MD simulatiovist Egs.(3.1) and FIG. 1. (@ Intermediate scattering functidh(k; ,t) as a func-
(3.2) over the typical range of wave numbeksaccessible, tion of timet for bulk fluid; (1) kj=0.22, (O) k;=0.38; the solid
the set of coefficientsy,v;,Dy,I'} turns out to depend ok line is the fit of Eq.(3.4) to MD data.(b) as(a), but for M(ky.,t);
even though excellent fits are usually obtaifisele Figs. (a) the solid line is the fit of Eq(3.11) to discrete data points.
and Za)]. Since, on the other hand, the dependence of
{7v,v,D1,I'} onkj is unknown analytically, an extrapolation where
of these quantities to the thermodynamic limig0 or

equivalentlyL —o, N/As,,s,=const, andA=L2) is gener- vfkﬁ
ally prohibited. Mo(kp) === (3.109
B. Memory function , Dr) ,
A determination of y,v,D1,I'} in the hydrodynamic re- X'=\ T 5 KT (3.10
gime butindependenbf the size of the simulation system
(i.e., independent ok) is, however, possible following the —1 —1
recipe proposed in Refl]. It is based on solving Volterra’s X"=v|K| \/—+O(kﬁ)2kaH —, (3.109
equation Y Y
dF(kH ’t) ! ’ ’ ’ —
—T=Ldt Mk )k t=t7), - Vi Y= —MO(VZ Y 1o (3.100
(3.9 X

numerically for the memory kerne¥ (k;,t) using as input At this point, it is important to realize that the backtransfor-
F(kj,t) from MD. This can be achieved by employing an mation of the analytic expression fof (k| ,s) into the time
algorithm suggested by Berne and Hatd]. domain does not require any additional simplifying assump-
Equation(3.8) can also be Laplace transformed and thenftions like the ones invoked to get E(.4) from Eq. (3.3.
solved analytically for M(kj,s) using also Eq(3.3. The  Thus, unlike Eq(3.4), Eq. (3.9 is exactto all orders ink; in
result can be transformed back into the time domain to givdhe hydrodynamic regimgd]. S
[1] Sincex” e R, Egs.(3.100 and(3.10d permit to simplify
the expression given in E43.9) and rewrite it as
M (K ,t) =Mgo(kpexp —x"t)[coshix"t) —iy"sinh(ix"t)],
(3.9 M(ku,t)=Mo(k”)eXF(—X't)CO$X"t). (3.11
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are purely thermodynamic quantities, we employ a mean-
field theory to investigate their behavior as one approaches

the spinodal. In Eq(3.123, mis the mass of a molecule.

The analysis ofy andv | departs from the mean-field free
energy.F of a confined fluid developed in RdflL2] where it
was shown that

Fiky)

1—-bp

pA3

F=-— kBT[ N In

+ N} +NW¥(s,) —Nay(s,)p.
(3.13

In Eqg. (3.13, kg is Boltzmann’s constantp is the mean
density of the confined fluid\ =h/\27mmkgT is the thermal
de Broglie wavelengthH{ Planck’s constantb=2mo>/3 is
the volume excluded to a pair of hard spheres of diameter
W (s,) is the external potential exerted on the confined fluid
by two planar, chemically homogeneous substrates separated
by a distances,, and

M(k,)

30 1

ap.

(3.19

In Eq. (3.14), a,=4e€b is the contribution of intermolecular
attraction to the bulk free energy whegéas the depth of the
attractive well. In the limits,—o, ¥(s,)—0 anday(s,)
FIG. 2. (a) Intermediate scattering functidf(k,t) as a func- —a,, such that Eq(3.13 reduces to the well-known expres-
tion of timet for k;=0.3142; () bulk fluid, (A) confined fluid,  sion for the free energy of a van der Waals bulk fl[dd].
s,=4.1; (O) confined fluid,s,=1.9. (b) as(a), but for M(kj ). From Eq.(3.13 and the thermodynamic relatigt2]

ParametersMg,x’,x"} can be determined by fitting Eq. dF=—-8dT+udN+ 7s,dA+ 7,,Ads,,  (3.19
(3.11) to the numerical solution of Eq3.8). As before, for
F(kj,t) an excellent representation of the MD-generatedhe equation of state
data is achievefisee Figs. (b) and 2b)].

Y pkgT ,
T”:_W % :—erap(sz)p (3.16
C. Mean-field theory T.N,s,

At this point, it seems worthwhile to briefly recall the . .
. . readily emerges. In Eq3.195, S denotes entropyy is the
hydrodynamic expression fdf(k,t) [see Eq.(3.4)]. One chemical potentiaI,T”E%(rxx+ 7,y) and ,, are diagonal

realizes that among the four constants determining its func-
. ) . components of the stress tensor, akds the area of the
tional form, two(i.e., y andv|) play a somewhat more dis- ) s

e . -~ (planay solid-fluid interface.

tinguished role. Not only doeg control the relative contri- From Eq.(3.13 and the definition

bution of the two exponential terms in E3.4), it also q.(3. '

enters Eq.3.4) in a more indirect way through Eq$3.5),

(3.6), and(3.7); v, on the other hand, is solely responsible - I( 527:) Nk
% N
N,A,s

T - kBN In(

pA3 >:|_3kB

T 0
for the period of oscillations ifr (k| ,t) (regardingk as con- ﬁ N T 1-bp/| 2
stan). Thus, for the subsequent analysis of the dynamics in (3.17)
the vicinity of fluid phase transitions, it seems justified to :

focus ony andv| . Moreover, since

"~z

is obtained which is the ideal-gas expression as expected

c. from mean-field theory. Moreover, thermodynamic consis-
y= C_” (3.129  tency requires the expression
As,
CTH 1 Tozﬁ (3 1&
y=—=14+ —— .
Y (97| Cas, PCas,K|
UHE_E (9— (3.12b
PInTs, to hold[14]. From Eq.(3.18), the expansion coefficient
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1
=7

) _ ke(1-bp)
N, KeT—2ay(s,)p(1-bp)
(3.19

ap

aT

1

p

and the transverse isothermal compressibility
_ (1-bp)?
TN, PLKsT—2ay(s,)p(1— bp)?]

p
a
(3.20

are obtained with the aid of E¢3.16). Substituting now the
far right sides of Egs(3.17), (3.19, and (3.20 into Eq.
(3.18, we finally obtain

. 2kgT
3kgT—6a,(s,)p(1—bp)?’

y=1 (3.20)

In the limit of an ideal gasp—0 and we recovery®= 3
from Eq. (3.21) as we must. This limiting value is also ob-

tained if the ideal gas at arbitrarily high density is perceived

as being composed of attractionless,€0) mathematical
points (=0 and thereford=0). Under these assumptions,
af'= 1T, k['=1/pksT, and y"=3 is again recovered from
Eq. (3.18 using also Eq(3.17.
Substituting Egs.(3.18, (3.19, and (3.20 into Eq.

(3.12b, we obtain

1)2

K

1
:1_—bp\/kBT—2ap(Sz)p(l—bp)2+

1 T (
Pl p MCas,

U=

2
BT
MCas,’

(3.22

which we subject to further analysis in Sec. Il D below.

D. Stability of thermodynamic phases

PHYSICAL REVIEW E57, 051202 (2003

(W) @< (3.253
= , _
I 1 ns,
Pw®
5 =—pakﬁ‘<0, Ya (3.25h
I ) 1A
As,

to hold irrespective of.

Mathematically speaking, at constantw(u) is always a
concave see Eq(3.25h], monotonidsee Eq(3.253] func-
tion with slope and curvature being determined by the nature
of the thermodynamic phase under consideratian, by p
and «{"). Because of concavity and monotonicity and since,
in general,p®+ pP for subcritical thermodynamic states, in-
tersections between® andw” exist at which pairs of phases
a and B coexist. For a giverT, the chemical potential at
coexistencmf{ﬁ is obtained by solving the equation

(3.26

If 0%(uf)=wP(ulf) is the absolute minimum of the
grand-potential densitye and B8 are thermodynamically
stable, coexisting phases.

Suppose, now that the densities of the thermodynamically
stable coexisting phases satisfy the inequality

o (uif)=wP(ul), T,As,=const.

B (3.27
such that foru< ,u)’fﬁ the thermodynamically stable phase is
a, whereas for > u2” this is the case for phage[see Eq.
(3.253]. Consequently,« is metastable for,u>,u§"3,
whereas this is true foB over the corresponding range
<,u§§5. Metastable branches end at the stability limit.
Within the scope of mean-field theory, this stability limit
is demarcated by a divergence of the isothermal compress-
ibility defined in Eq.(3.20. The divergence occurs at a den-
sity ps that defines the location of the so-called spinodal at
the given temperatur@. From Egs.(3.20 and(3.2)), it is
straightforward to verify that the divergence of implies a

p>p

In an open thermodynamic system metastable- or glodivergence ofy since
ballystable states are characterized by minima of the grand

potential density

(3.23

Equation(3.23 follows from Eq.(3.15 through a Legendre
transformation

o=T1(n,T,AS,).

dQ=d(F—uN) (3.29
and by noting thatf)l =As,w is a homogeneous function of
degree one irA provided all its other natural variables re-
main constant. Over a certain range of chemical poterdls
fixed T, A, s,), it may turn out that several minima of exist
at the sameu. In other words, a range @f’s exists such that
w(w) is a multivalued function, where the lowest valwé
corresponds to the thermodynamically stable statehereas

3 (1-bp)?

K||—§ W (328)

(y—=1)

and the factor (+bpJ?/pKkgT remains finite at the spinodal
for T>0. This is demonstrated in the Appendix where ex-
plicit expressions forp, are derived[see Egs.(Al1l) and
(A12)].

Contrary toy, v remains finite and nonzero along the
spinodal[15]. This follows from Egs.(3.19, (3.20, and
(A2) which permit us to rewrite Eq.3.22 as

kgT 1

B 2 kgT -
Mows, 1-bp V3 m~ 329

where the far right side follows from E@3.17). Equation

vll:l—bps

the others refer to metastable states. In general, thermody3.29 shows that at mean-field level and for thermodynamic

namics requires the inequalities

states along the spinodal, the velocity of sound depends only
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FIG. 3. Grand-potential density(u) for T=0.8. Symbols refer FIG. 4. Ratio 1# of isochoric and isostress heat capacities as a

to bulk gas ©), bulk liquid (®), confined “gas” (O), and con-  function of density fofT=0.8 in the bulk. Symbols refer to results
fined liquid (M) (s,=10). Solid lines are intended to guide the eye. obtained by fitting Eq(3.4) to MD data (1) and to data obtained in

) ~ Monte Carlo simulationsB) (see text The solid line represents
on the volumeb, excluded to a pair of hard spheres, but istnhe fit of Eq.(3.22.

independent of the attraction between a pair of fluid mol-

ecules. should hold in the hydrodynamic regintgee also Figs. 2, 3,
5 and Secs. IVB, IV C of Refl1]). Let m; andm, be con-
IV. RESULTS stants of proportionality in the respective scaling laws for
Mg, andx” [see Eqgs(4.1)] which are determined as slopes of

linear least squares fits. It is then easy to verify from Egs.
To locate phase transitions in bulk and confined fluids, wg3.108 and (3.100 that

employ grand canonical ensemble Monte CaBCEMOQ)

simulations permitting us to determine(u) for various my
temperatured from Eq.(3.23 using a molecular expression y=1+ m_2
for 7 (see, for example, Eq13) in Ref.[16]). Typical re-

sults_plotted in Fig. 3 illustrate the_ precision vynh which a V= ym;+m, (4.2b
solution of Eq.(3.26 can be obtained numerically. Even

though Fig. 3 shows that whereas it is possible in GCEMC tgprovide a means to calculateandv, simultaneously.
simulate states well inside the metastable regime of either

gas or liquid, it is generally not possible to go directly to the B. Locating the bulk spinodal

stability limit (i.e., the spinodal The reason is that the local In Fig. 4, we plot 14 as a function op andT=0.8. Two

minimum of w at the equilibrium mean density becomes branches at lover) and higlter) densities are clearly discern-
rather shallow, and density fluctuations increase simulta- 9 y

neously as one approaches the spinodal. However, the shél?—le' Asp increases in the low-density regimeyTdecreases,

lower the minimum ofw, the larger is the probability that a whereas in the high-density regime it rises withTo check

sufficiently large density fluctuation may eventuall arisesthe accuracy ofy obtained from the procedure detailed in
y larg y Y y TE‘vec. IV A, we compare with results from Monte Carlo simu-

which may then carry the system aver the grand-potentlalations in the mixed isostress-isostrain ensemble introduced

barrier separating the metastable sta}te from the globall h Ref. [14]. In the mixed isostress.-isostrain ensemlibeed
stable one at a lowep. To locate the spinodal, we therefore X -
N, T, 7/, S;), the molar isostress heat capacity is

turn to MD simulations in the microcanonical ensemble us-
ing as input the mean number of fluid molecules obtained

from GCEMC for a givenu and T, and states off the spin- c
odal. This assumes implicitly that for the typical system sizes

used in this study, the principle of equivalence of statistical . . .
physical ensembles applié27]. The MD simulations are vv_here the(configurational part of the averagenthalpy is
performed according to the conditions summarized in Ref9iven by

[, Hy=—1(A)s,+(U 4.4
The subsequent analysis bf(kj,t) to obtainy andvy, (H)=—7(A)s,+(U) (4.4
which are the quantities of key interest in the present contex
then proceeds as follows. From E@3.109 and(3.11), it is
clear that the scaling laws

A. Technical details

(4.28

7= gKe T [(H?)—(T)2], 4.3

NkgT?

tand(U) is the (average configurational energy14]. In the
canonical ensemblgixed N, T, A, s,), the (molar isochoric
heat capacity is given by

M o(k)) okf , (4.13 i 3k L 2 2
X//Z,xkﬁ (41b) CASZ_E B+WBT2[<U >_<U> ] (45)
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FIG. 5. As Fig. 4, but for various temperaturés-0.7 (), T
=0.8 (W), andT=1.5 (O). Solid lines represent fits of E¢B3.21).
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35
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251
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P

0 041
FIG. 6. As Fig. 5, but fory); T=0.7 (0), T=0.8 (O), and

T=1.5 (A) calculated from Eq(4.2b. Filled symbols represent
values at the spinodal calculated from £E§.29; T=0.7 (H) and

Angular brackets indicate averages in the respective ernF=0.8 (@).

semble. Thus, Eq$3.18 and (4.3)—(4.5) offer a possibility
to calculatey from a sequence of Monte Carlo simulations in

sophisticated weigthed-histogram Monte Carlo technique. It

a generalized isostress-isostrain and the canonical ensemblé§ould be noted, however, that while also using a potential
Plots in Fig. 4 indicate not only the excellent mutual agree-cutoff re=2.5, Wilding left his intermolecular potential un-
ment between both data sets but also the high quality of thehifted, that is, in his expression fag; the termsu 4(r) as

fit provided by Eq.(3.21). From the fit, we estimate,b'sd
=0.12 on the lower)-density(i.e., ga$ side, whereas on the
high(en—density(i.e., liquid) sidep!=0.58. Note that in the
limit p—0, the ideal-gas valug®= 3 is recovered from the
plot in Fig. 4 as expected from E3.21).

If the temperature increases, one expects the densities

well asu| 4(r¢)(r.—r) were absent. According to Snjit9],

this should have only a marginal effect ppbut a significant
impact on the critical temperature. However, we note that the
point of our work is not to estimate with high accuracy the
critical-point location for which a mean-field theory would
Be inadequate anyhow.

the gas and liquid branches of the spinodal to become more AS already emphasized in Sec. Ill Dy should remain

and more alike as one can verify from EG@\7b) which
implies

@(T) o,

lim (pd—pYoc lim si 3

T~>Tcib T—»Tgb

(4.9

In Eq. (4.6), T, is the bulk critical temperature defined in
Eq. (A9). Plots in Fig. 5 forT=0.7 and 0.8 confirm Eg.
(4.6), because s|ip(T)/3] decreases monotonically with in-
creasingT [see Eq.(A13)].

From Fig. 5, one also notices that for a sufficiently high
temperaturel = 1.5, the divergence of apparently disap-
pears, that is, 3/ exhibits a minimum at some density rather
than going to zero. From E@3.2)), it is straightforward to
verify that at mean-field level

dap -

ap

1

’}/2

_ 12a,(s,)ksT(1~bp)(3bp—1)
[5kgT—6ay(s,)p(1—bp)®]?

T

0

(4.7

is the necessary condition for an extremum of 16 exist.
Formally, Eq.(4.7) has solutiorp=1/b, which is physically
not sensible since it corresponds to an infinite valueyah
Eq. (3.16), and p=p.=1/3b corresponding to the critical
density. From the plot in Fig. 5, a rough estimate @f

finite and nonzero at the spinodak]. Plots in Fig. 6 support
this notion. It seems particularly noteworthy that data points
off the spinodal, which were obtained through the procedure
detailed in Sec. IV Alsee Eq.(4.2b)], are fully consistent
with the ones located directly on the spinodal, calculated
independently from Eq(3.29, whereb from the fit to the
corresponding data for 4/plotted in Fig. 5 was used. As
expected, v changes discontinuously at the spinodal,
whereas it varies continuously and monotonically for super-
critical thermodynamic states as one can infer also from the
plots in Fig. 6.

C. Confinement effects

If the fluid is now confined to a slit pore &f,=10, the
scenario illustrated by Figs. 4 and 5 changes in a significant
way. This can be seen from Fig. 7 where we ploy 85 a
function of p for the bulk and for the confined system at the
same temperatur€=0.7. From the figure, one notices that
apart from a shift in density, the high-density brangh (
>0.6) remains qualitatively unaffected by confinement. On
the low-density side, however, 1/for the confined fluid
does not immediately go to zero but exhibits a minimum
apparently not accounted for by the mean-field equation
(3.21). Even though Iy vanishes fOtplsd=O.4, it does not go
monotonically to the ideal-gas value as predicted by the
mean-field expression, Eq.(4.7), which implies
(dy Ydp)r<0 for all densitiesp<p9 [see Eq.(A11)].

=0.37 is obtained which is only 14% higher than the muchHowever, numericallyy®=% is recovered in the limitp

more accurate resuft.=0.3197 of Wilding[18] who used a

—0 as it musfsee Eq(3.21)].

051202-7



M. SCHOEN AND F. PORCHERON PHYSICAL REVIEW E7, 051202 (2003

0.6

density fluid. For the present choice of system parameters,
we did not observe prewetting but rather a steady and con-
tinuous increase in the thickness of the adsorbed (dpe
also Sec. V. The approach of the stability limit of the ad-

500

05}

04t \i

'-.... - sorbed film is again reflected by+l/going to zero at the
¥ o3 "a spinodalp'sdzo.4, which is now much higher than for the
. corresponding bulk systelisee Fig. 7.
0.2 r Since the adsorbed film is highly inhomogeneous, it
o1 seems not surprising that the associated changeyigdrinot
' be accounted for by the simple mean-field theory summa-
0 . . . "™ Ll rized in Sec. lll C which explicitly assumeshmmogeneous
0 01 02 03 04 05 06 07 08 confined phasgl2]. Once the fluid underwent capillary con-
P densation, however, the present pore widik 10 is large

FIG. 7. As Fig. 4, but folf = 0.7 in the bulk (1) and a confined  £1°Ugh for a homogeneous midsectioantered oiz=0) of
fluid (s,=10) (M). The dashed line represents a fit of 21 to the confined fluid to ex_lst. Then, the mean-field treat_ment
all bulk data points. The solid line is obtained by a fit of Eg2) ~ P€COMes more appropriate and consequently data points on
only to data points along the high-density branch of the confineothe liquid side of the Smedalp(>O'6] see Fig. yare rep-
fluid (p>0.7). resented_ properly by E¢3.21) (gee Fig. 7.
The divergence o at the spinodal has consequences for
To understand the origin of this minimum, we analyze inthe decorrelation of density modes reflected by the decay of

Fig. 8 the local density F(k,t) as time passes. Noticing from Ed8.5—(3.7) that
ey 4.8 v
. . 1
whereN(z) is the number of molecules located zat §z/2 IimI'= §(a+ by, (4.9b
(6z=0.05) in a given configuration and - -) indicates an r—
average in the grand canonical ensemble. Over the density .
range 0.06 p=0.34, where 1y exhibits minimum parallel . _ e
plots in Fig. 8 show that a thin film of fluid is adsorbed on y"f;d(k”) (3athyz,, 4.90
each substrate which thickens agi.e., u) increases. This
film consists of individual layers of molecules as reflected byand one readily concludes from E@®.4) that
the nonmonotonic dependence @fz) on z, where maxima
correspond to the center of mass of each layer. On account of limF(k ,t)=1, Vt, (4.10

the diminishing fluid-substrate attraction, these layers be- Y=

come increasingly less pronounced as one departs from the o S
substrate surface. Howeves(z) assumes rather loi.e., Where we implicitly assume, by, andv to remain finite at
gaslike values around the center of the slit pore reflectingt® spinodal. Plots in Fig. 9 corroborate this notion. Hence,
the low probability of finding fluid molecules. Ag in- @S One approaches the stability limit of either bulk or con-
creases, capillary condensation eventually sets in and t{fined phases, there is a significant lack of decorrelation in the

gaslike inner part of the pore is then occupied by high_collective dynamics. Our results would suggest that decorre-
lation is completely absent for thermodynamic states located

25 . directly on the spinodal. Intuitively, it might be easier to
grasp this effect in terms of the memory kere{k ,t). For
example, taking the Laplace transform of \olterra’s equation
[see Eq.(3.8] and noticing that the Laplace transform of
F(kj,t) in Eq. (4.10 is 1k, one hasM (k|,s)=0. A trivial
backtransformation to the time domain leads Ni(k ,t)
=0. In other words, collective dynamic modes for states
directly on the spinodal completely lack any “memory” of
their past.

p(z)

V. SUMMARY AND CONCLUSIONS

0 01 02 03 04 05
z/s,

i
-0.5 -0.4 -0.3 -0.2 0.1 . . .
In this work, we are concerned with extending the analy-

sis of F(k| ,t) described in Refl1] to thermodynamic states
FIG. 8. Local density(z) as a function of positioz between  in the vicinity of a fluid phase transition. Our results show
lower (z/s,=—0.5) and upper #/s,=+0.5) substrates;[{) p  that as one penetrates into the metastable regime of fluid
=0.06, (@) p=0.12, O) p=0.31, and ®) p=0.34(see Fig. 7. phases, decorrelation of propagating collectifdensity
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&
'S
1.5
t
FIG. 10. Dynamic structure factoB(k;,) as a function of

frequencyw for confined fluid T=0.7,s,=10, kj=0.25). Curves
are shown for densities=0.79 (1), 0.75 @), and 0.72 ©O) and
lines are fits of Eq(4.11) of Ref.[1] intended to guide the eysee

N also Fig. 9.

x“:

g lar fashion as observed before in the bulk. Since the mean-

field theory employed here is based upon the explicit as-
sumption that the pore phase is homogeneous in all three
spatial dimensions, it seems not surprising that it cannot ac-
, . . count for effects associated with structural changes in a
0 5 10 15 20 highly inhomogeneous confined phase.

t One may also speculate that if multilayer adsorption is
accompanied by a prewetting transition thatnay show two
divergences: one associated with the coexistence of micro-
scopically thin films of different thicknesséise., the prewet-
ting transition and another one associated with the conden-
sation of such a filnii.e., capillary condensatignSince the
present system did not exhibit a prewetting transition, we are
modes becomes increasingly slower; as the fluid reaches itirrently extending our study to a case where it seems more
stability limit (i.e., at the locus of the spinodak decorrela- |ikely that such a prewetting transition may, in fact, occur.
tion of these modes is practically absent. This becomes ap- Our study may also have important repercussions for scat-
parent fromF (k; ,t) that remains nearly unity for all times. tering experiments in the vicinity of a phase transition in

Within a mean-field treatment, the concept of a spinodal isonfined fluids. For thermodynamically stable states, the dy-
associated with a divergence of the isothermal compressibilamic structure factoB(k), ), which is measured in light
ity. Since k| is directly proportional to the ratio of heat ca- scattering experiments, consists of three lines, namely, the
pacities y, which is one of the parameters governing theRayleigh peak centered at the frequengy 0 and two Bril-
shape off(k,t) in the hydrodynamic regime, the increas- |ouin peaks shifted by w= +u |k (k—0) relative to the
ingly slow decay of(kj,t) with time can be ascribed to a Rayleigh line. Sinc&S(k|, ) is related toF (k;,t) through a
divergence ofy at the spinodal. Obviouslyy can diverge Laplace transformation, it is clear that as one approaches the
only for sukeritical temperatures. Faupecritical tempera-  spinodal[where F(kj,t)=1] the set of Brillouin and Ray-
tures, on the other hang, passes through a maximum ¢1/ |eigh lines should be replaced by a single line such that di-
passes through a minimyrat the critical density of the fluid. rectly at the spinodalS(ky,w)=8(w). This change in
Thus, for supercritical states, tiigk,t) remains a damped S(k;,w), illustrated by the plots in Fig. 10 for liquidlike
oscillatory function of time. Only quantitative changes in states of the confined fluid, should be detectable in scattering
amplitude and damping characteristics of these oscillationgxperiments on fluids confined to ordered porous matrices
reflect changes in the thermodynamic state. such as MCM-41 or SBA-15 types of materials, and should

Unfortunately, the mean-field theory is only of limited use therefore provide experimental insight into the collective dy-

as far as confined fluids are concerned. It describes correctiyamics and its relation to the phase behavior of confined and
the divergence ofy as one approaches the spinodal from thepulk fluids.

high(en-density(i.e., liquid) side of the phase diagram, but
fails to account for the more complex variation pfon the
low(en-density side of the phase diagram. The more com-
plex dependence of for low(er-density states is a result of We are grateful to the Sonderforschungsbereich 448 “Me-
the growth of fluid layers on each substrate prior to capillarysoskopisch strukturierte Verbundsysteme” for financial sup-
condensation, whereupondiverges in a qualitatively simi- port.

FIG. 9. As Fig. 1a), but for confined fluids §,= 10) at various
densities and=0.25; (@) p=0.1 (A), p=0.2 (@), p=0.4 (H);
(b) p=0.79 (AA), p=0.75 (O), p=0.72 [@J) (see also Fig. )t
Solid lines are fits of Eq(3.4) intended to guide the eye.
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APPENDIX: LOCATION OF THE SPINODAL

At mean-field level, thermodynamic states along the spin
odal are characterized by an infinitely large isothermal com

pressibility, that is, they satisfy the equation

1
——F=0, Al
K|(ps) (A1)
which is equivalent tgsee Eq.(3.20]

kBT_Zap(Sz)Ps(l_st)zzo- (A2)

The zeros of this cubic polynomial can be found analyti-

cally. Therefore, we introduce the transformation

~ 2
Ps—Ps=Ps™ 3 (A3)
which permits us to rewrite EGA2) as
1o .\ 2 kg T o s
P 30" ome 2aysyp O AY

Equation(A4) is of the general formp3+ pps+q=0, where

1

T 357 (A5a)

p:

2 keT

o 2ays)b’ (ASD)

q:

Hence, Eq(A4) is amenable to an analytic solution using the
Cardanic formula$20]. With these identifications, the three

real solutions of Eq(A4) can be cast compactly as

~ T)+2(k—1
p[sk](T)=2?{/;C05{@( ) 3( )7 ko123,
(A6)
where
= p3_ ! A7
X=\ T 27 ol (A73)

2T— T sz))

=arcco
% Tep(s,)

_ 9
¢(T)=arcco% 2%

(A7b)

and Egs.(A5) have also been used. In E@A7b), we have

also utilized the fact that the pore critical temperafliggs,)
is defined ag12]

8a,(s,)
KeTep(S,) = - (A8)
Because of Eq(3.14),
lim Tep(s,) =Tep, (A9)

SZ*}OO
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where T, is the critical temperature in the bulk. Moreover,
introducing the critical densityp. (of bulk and confined

fluid) through[12]

1
Pc:% (A10)

and reverting the transformati¢eee Eq(A3)] one can eas-
ily verify that the density of states along the low-denglt)
branch of the spinodal is given by

1+coa(—“’(T)3+2”ﬂ, (A11)

p&(T)=p2l(T)=2p

whereas the density along the high-density branch is ob-
tained from

1+ co{ M) } . (A12)

P =p(T)=2p,
The fact that Eqs(A11) and (A12) describe low- and high-
density branches of the spinodal, respectively, can be verified
by realizing that the spinodal is defined only for temperatures
in the range 6= T<T,(s,) so thate(T) is defined over the
range

7= ¢(T)=0 (A13)

and therefore
0=<pd(T)<pep. (Al4a)
3pep>pe(T)=pep. (A14b)

The solution fork=1 in Eq.(A6) is unphysical because it
gives rise to a density exceeding 3 over the range of val-
ues¢(T) can attain. For these densities,in Eq. (3.16 is
positive indicating that the fluid is mechanically unstable.

In Sec. Il C, it was also argued that the inequality

(1-bpy)?®

pkaT <o, T>0

(A15)

holds such that a divergence ef directly implies a diver-

gence ofy. Replacing in the inequalityA15), ps by either
pY or ph® from Egs.(A11) or (A12), respectively, it is clear
that the numerator of the resulting expression remains finite
since the density on the spinodal is finite. Moreover, it can

easily be verified that the denominator contains the factor

T+nm
T l+C05<—(p( )

=0, (A16)

=

3

wheren=2 for p' andn=4 for p"®, and the equal sign

holds only forT=0. Thus, forT>0, the left side of the
inequality (A15) is indeed finite and positive as it mUystee
Eqg. (3.28].
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